skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen-Wiegart, Yu-chen Karen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Abstract Thin‐film solid‐state metal dealloying (thin‐film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters for nanostructure formation remains largely unknown and dependent on experimental trial and error. To overcome this challenge, a workflow enabling high‐throughput characterization of thermal treatment parameters is demonstrated using a laser‐based thermal treatment to create temperature gradients on single thin‐film samples of Nb‐Al/Sc and Nb‐Al/Cu. This continuous thermal space enables observation of dealloying transitions and the resulting nanostructures of interest. Through synchrotron X‐ray multimodal and high‐throughput characterization, critical transitions and nanostructures can be rapidly captured and subsequently verified using electron microscopy. The key temperatures driving chemical reactions and morphological evolutions are clearly identified. While the oxidation may influence nanostructure formation during thin‐film treatment, the dealloying process at the dealloying front involves interactions solely between the dealloying elements, highlighting the availability and viability of the selected systems. This approach enables efficient exploration of the dealloying process and validation of ML predictions, thereby accelerating the discovery of thin‐film SSMD systems with targeted nanostructures. 
    more » « less
    Free, publicly-accessible full text available April 15, 2026
  3. Aqueous Zn/MnO 2 batteries with their environmental sustainability and competitive cost, are becoming a promising, safe alternative for grid-scale electrochemical energy storage. Presented as a promising design principle to deliver a higher theoretical capacity, this work offers fundamental understanding of the dissolution–deposition mechanism of Zn/β-MnO 2 . A multimodal synchrotron characterization approach including three operando X-ray techniques (powder diffraction, absorption spectroscopy, and fluorescence microscopy) is coupled with elementally resolved synchrotron X-ray nano-tomography. Together they provide a direct correlation between structural evolution, reaction chemistry, and 3D morphological changes. Operando synchrotron X-ray diffraction and spectroscopy show a crystalline-to-amorphous phase transition. Quantitative modeling of the operando data by Rietveld refinement for X-ray diffraction and multivariate curve resolution (MCR) for X-ray absorption spectroscopy are used in a complementary fashion to track the structural and chemical transitions of both the long-range (crystalline phases) and short-range (including amorphous phases) ordering upon cycling. Scanning X-ray microscopy and full-field nano-tomography visualizes the morphology of electrodes at different electrochemical states with elemental sensitivity to spatially resolve the formation of the Zn- and Mn-containing phases. Overall, this work critically indicates that for Zn/MnO 2 aqueous batteries, the reaction pathways involving Zn–Mn complex formation upon cycling become independent of the polymorphs of the initial electrode and sheds light on the interplay among structural, chemical, and morphological evolution for electrochemically driven phase transitions. 
    more » « less
  4. null (Ed.)
  5. Abstract Machine learning-augmented materials design is an emerging method for rapidly developing new materials. It is especially useful for designing new nanoarchitectured materials, whose design parameter space is often large and complex. Metal-agent dealloying, a materials design method for fabricating nanoporous or nanocomposite from a wide range of elements, has attracted significant interest. Here, a machine learning approach is introduced to explore metal-agent dealloying, leading to the prediction of 132 plausible ternary dealloying systems. A machine learning-augmented framework is tested, including predicting dealloying systems and characterizing combinatorial thin films via automated and autonomous machine learning-driven synchrotron techniques. This work demonstrates the potential to utilize machine learning-augmented methods for creating nanoarchitectured thin films. 
    more » « less
  6. Thin-film solid-state interfacial dealloying (thin-film SSID) is an emerging technique to design nanoarchitecture thin films. The resulting controllable 3D bicontinuous nanostructure is promising for a range of applications including catalysis, sensing, and energy storage. Using a multiscale microscopy approach, we combine X-ray and electron nano-tomography to demonstrate that besides dense bicontinuous nanocomposites, thin-film SSID can create a very fine (5–15 nm) nanoporous structure. Not only is such a fine feature among one of the finest fabrications by metal-agent dealloying, but a multilayer thin-film design enables creating nanoporous films on a wider range of substrates for functional applications. Through multimodal synchrotron diffraction and spectroscopy analysis with which the materials’ chemical and structural evolution in this novel approach is characterized in details, we further deduce that the contribution of change in entropy should be considered to explain the phase evolution in metal-agent dealloying, in addition to the commonly used enthalpy term in prior studies. The discussion is an important step leading towards better explaining the underlying design principles for controllable 3D nanoarchitecture, as well as exploring a wider range of elemental and substrate selections for new applications. 
    more » « less